Additional R packages for this vignette:
This example reads in centered_ipd_sat
data that was
created in calculating_weights
vignette and uses
adrs_sat
dataset to run binary outcome analysis using the
maic_unanchored
function by specifying
endpoint_type = "binary"
.
Note that parameters ipd
and pseudo_ipd
in
the maic_unanchored
function for binary data analysis needs
to have the following columns: USUBJID, ARM, RESPONSE. USUBJID in
ipd
needs to match USUBJID in weights_object
.
pseudo_ipd
for binary data can be conveniently generated
using get_pseudo_ipd_binary
function.
Robust standard error for the adjusted result are calculated by
sandwich variance estimator in sandwich
package with the
function vcovHC
. Default type of variance estimator
(specified by parameter binary_robust_cov_type
) is
HC3
, but other types can be specified. For more information
on different types, see vcovHC
.
data(centered_ipd_sat)
data(adrs_sat)
centered_colnames <- c("AGE", "AGE_SQUARED", "SEX_MALE", "ECOG0", "SMOKE", "N_PR_THER_MEDIAN")
centered_colnames <- paste0(centered_colnames, "_CENTERED")
weighted_data <- estimate_weights(
data = centered_ipd_sat,
centered_colnames = centered_colnames
)
# get dummy binary pseudo IPD
pseudo_adrs <- get_pseudo_ipd_binary(
binary_agd = data.frame(
ARM = "B",
RESPONSE = c("YES", "NO"),
COUNT = c(280, 120)
),
format = "stacked"
)
result <- maic_unanchored(
weights_object = weighted_data,
ipd = adrs_sat,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
# binary specific args
binary_robust_cov_type = "HC3"
)
There are two summaries available in the result: descriptive and inferential. In the descriptive section, we have summaries of events.
## $summary
## trt_ind treatment type n events events_pct
## 1 B B Before matching 400.0000 280.0000 70.00000
## 2 A A Before matching 500.0000 390.0000 78.00000
## 3 B B After matching 400.0000 280.0000 70.00000
## 4 A A After matching 199.4265 142.8968 71.65386
In the inferential section, we have the fitted models stored
(i.e. logistic regression) and the results from the glm
models (i.e. odds ratios and CI). If other effect measures are needed
besides odds ratios, we have an option to fit risk ratios or risk
differences via eff_measure
parameter. Here is the overall
summary.
## case OR LCL UCL pval
## 1 AB 1.519481 1.1247154 2.052805 0.006417064
## 2 adjusted_AB 1.083350 0.7268601 1.614683 0.694183560
Here are model and results before adjustment.
##
## Call: glm(formula = RESPONSE ~ ARM, family = glm_link, data = dat)
##
## Coefficients:
## (Intercept) ARMA
## 0.8473 0.4184
##
## Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
## Null Deviance: 1023
## Residual Deviance: 1016 AIC: 1020
## $est
## [1] 1.519481
##
## $se
## [1] 0.2373883
##
## $ci_l
## [1] 1.124715
##
## $ci_u
## [1] 2.052805
##
## $pval
## [1] 0.006417064
Here are model and results after adjustment.
##
## Call: glm(formula = RESPONSE ~ ARM, family = glm_link, data = dat,
## weights = weights)
##
## Coefficients:
## (Intercept) ARMA
## 0.84730 0.08006
##
## Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
## Null Deviance: 726.7
## Residual Deviance: 726.5 AIC: 712.5
## $est
## [1] 1.08335
##
## $se
## [1] 0.2275624
##
## $ci_l
## [1] 0.7268601
##
## $ci_u
## [1] 1.614683
##
## $pval
## [1] 0.6941836
If bootstrap standard errors are preferred, we need to specify the
number of bootstrap iteration (n_boot_iteration
) in
estimate_weights
function and proceed fitting
maic_unanchored
function. Then, the outputs include
bootstrapped CI. Different types of bootstrap CI can be found by using
parameter boot_ci_type
. See boot.ci
in
boot
package for more details.
weighted_data2 <- estimate_weights(
data = centered_ipd_sat,
centered_colnames = centered_colnames,
n_boot_iteration = 100,
set_seed_boot = 1234
)
result_boot <- maic_unanchored(
weights_object = weighted_data2,
ipd = adrs_sat,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
boot_ci_type = "perc",
# binary specific args
binary_robust_cov_type = "HC3"
)
result_boot$inferential$fit$boot_res_AB
## $est
## [1] 1.08335
##
## $se
## [1] NA
##
## $ci_l
## [1] 0.846157
##
## $ci_u
## [1] 1.796863
##
## $pval
## [1] NA
Note that the bootstrap in unanchored analysis only uses resampling of internal IPD trial population and assumes there is no uncertainty in the comparator trial population (i.e. estimated mean outcomes). [1] Therefore, we recommend the use of sandwich estimators for the variance calculation in the unanchored analysis.